C O I |eCtI O n F u n Ctl O n S Please send corrections and suggestions to cannon@synergfarmsolutions.com. (v3)

Mutated means the collections modifies itself. Keep in mind that you can effectively mutate a collection even if the collection returns a new collection by assigning it to itself like this:
$cExample:=$cExample.reverse(). The colored bars are an attempt to visually identify function “pairs”. Don’t forget about the new For each syntax:
For each (Object ; Collection { ; begin {; end } }) { Until | While } (Boolean_Expression) }

Can iterate through collections, entity selections, and object properties. Copy
Result Type Type Parameter
.push (element {; element2 ; ... ; elementN}) -> Mutated Mutated

Appends one or more elements.

.pop () -> Element Mutated (and
Removes the last element. element)
The removed element is returned by the function.

.insert (index ; element) -> Mutated Mutated
Inserts an element at the specified index.

.remove (index {; howMany}) -> Mutated Mutated
Removing a range of elements.

.unshift (value {; value2 ; ... ; valueN}) -> Mutated Mutated
Prepends one or more elements

.shift () -> Element Mutated (and
Removes the first element. element)

The removed element is returned by the function.

.resize (size {; defaultValue}) -> Mutated Mutated
Resizes the collection, adding null elements if needed.

.clear () -> Mutated Mutated
Removes all elements.

.combine (col2 {; index}) -> Mutated Mutated
Inserts another collection into this collection, either at the end or a specific index.

.concat (value {; value2 ; ... ; valueN}) -> New collection New collection Shallow
Creates a collection from the original collection and with the passed in values appended.
Note: if a value being appended is a collection, the elements of the collection will be appended.

.query (queryString {; value}{; value2 ; ... ; valueN}{; querySettings}) -> New collection New collection Shallow = Query String
Returns a new collection with elements that match the query string.

filter (methodName {; param}{; param2 ; ... ; paramN}) -> New collection New collection Shallow = Method
Returns a new collection with elements the method returns true for.

.indices (queryString {; valuej{; value2 ; ... ; valueN}) -> Collection of indices Collection of Query String
Returns a collection of indices for elements that match the query string. indices

.indexOf (toSearch {; startFrom}) -> Index Index Value (text, number,
Returns the index of the first element the toSearch value is found in. boolean, date, null,

object, or collection)

.lastindexOf (toSearch {; startFrom}) -> Index Index Value (same as
Returns the index of the last element the toSearch value is found in. indexOf)
.find ({startFrom ;} methodName {; param {; param2 ; ... ; paramN}}) -> Value Value Method

Returns the value of the first element the method returns true for.

.findIndex ({startFrom ;} methodName {; param {; param2 ; ... ; paramN}}) -> Index Index Method
Returns the index of the first element the method returns true for.

Query String Syntax (from dataClass.query() documentation)
attributePath comparator value {logicalOperator attributePath comparator value}

Comparatpr Logical Operator
Comparison Symbol(s) Comment Conjunction Symbol(s)
Equal to — Getslmatchlngldatg, supports the wildcard (@), neither case- AND & &&. and
sensitive nor diacritic. OR
’ r
— B Gets matching data, considers the @ as a standard character, l.1l.o
’ neither case-sensitive nor diacritic

Not equal to #, 1= Supports the wildcard (@)

== 7

'NO’Tls Considers the @ as a standard character Attribute Path

Examples
Less than < “country = :1”; “Canada”
Greater than > “country.name = :1”; “Canada”
“countries[].name = :1” ; “Canada”
Less than or equal to <=
Greater than or equal to >=
. Gets data equal to at least one of the values in a collection or in a set
Included in IN
of values

Not condition applied on a NOT Parenthesis are mandatory when NOT is used before a statement
statement containing several operators

Contains keyword % Keywords can be used in attributes of string or picture type

mailto:cannon@synergfarmsolutions.com

Copy

Result Type Type Parameter
.orderBy ({criteria}) -> New collection New collection Shallow = Property Path
Returns a new collection with elements ordered by the criteria. Criteria options: (and other options)
« Order by values at a property path (add “asc” or “desc” to specify sort order)
« A collection of criteria objects
« ck ascending or ck descending if ordering by scalar values
.orderByMethod (methodName {; extraParam}{; extraParam2 ; ... ; extraParamN}) -> New collection New collection Shallow = Method
Returns a new collection with elements ordered by the method.
.sort ({methodName {; extraParam}{; extraParam2 ; ... ; extraParamN}}) -> Mutated Mutated Method

Sorts the elements using the method.

.copy ({ck resolve pointers}) -> New collection New collection Deep
Returns a copy of the collection.

.reverse () -> New collection New collection Deep
Returns a copy of the original collection, but with all its elements order reversed.

.slice (startFrom {; end}) -> New collection New collection Shallow
Returns a copy of a range of elements from the original collection.
The end value can be negative to count backward from the end.

.distinct ({propertyPath}{;}{ck diacritical}) -> New collection New collection Shallow = Property Path
Creates a collection containing only distinct elements of the collection or at a specific property path.
Note: Only non-null elements are considered. The new collection will be sorted.

.extract (propertyPath {; targetPath}{; propertyPath2 ; targetPath2 ; ... ; propertyPathN ; targetPathN}{; ck keep null}) -> New collection New collection Deep Property Path
Creates a new collection with values from specific property paths extracted from the original collection.
Optionally, you can change the property name during the extraction as well.
Note: the targetPath can target a different property path level. Parent objects will automatically be created as needed.

.map (methodName ; param {; param2 ; ... ; paramN}) -> New collection New collection Depend = Method
Creates a collection that contains the values returned by the method after processing each element in the original collection. son
method
?
.reduce (methodName f{; initValue}{; paramj}{; param2 ; ... ; paramN}) -> Accumulated value Value Method

Provides a way for a method to be called for each element in the collection, each time modifying the accumulated value.

The accumulated value can be thought of as a local variable that is initialized with the initValue parameter and exists while the
function is running. This value is then returned at the end.

The accumulated value can be of type Text, Number, Object, Collection, Date, or Boolean.

.count ({propertyPath}) -> Real value Real Property Path
Returns the number of non-null elements in the collection or at a given property path.

.countValues (value {; propertyPath}) -> Long value Long Text, Number, Boolean,
Returns the number of times a specific value exists in the collection or at the given property path. Date, Object, or
Note: when looking for an object or collection, it is doing so based on reference. Collection and Property
Path
.every ({startFrom ;} methodName {; param {; param2 ; ... ; paramN}}) -> Boolean Boolean Method

Returns true if the called method returns true for all the elements in the collection.
The test can be limited to a range if startFrom is used and if the method terminates the scan early.

.some ({startFrom ;} methodName {; param {; param2 ; ... ; paramN}}) -> Boolean Boolean Method
Returns true if the called method returns true for any the elements in the collection.
The test can be limited to a range if startFrom is used and if the method terminates the scan early.

.sum ({propertyPath}) -> Real value Real Property Path
Returns the sum of any numeric values in the top level of the collection or at a given property path.

.average ({propertyPath}) -> Real value Real Property Path
Returns the average of any numeric values in the top level of the collection or at a given property path.
.min ({propertyPath}) -> Boolean, Text, Number, Collection, Object, or Date Boolean, Text, Property Path
Returns the lowest value in the top level of the collection or at a given property path. Number,
Collection,

Object, or Date

.max ({propertyPath}) -> Boolean, Text, Number, Collection, Object, or Date Boolean, Text, Property Path
Returns the highest value in the top level of the collection or at a given property path. Number,
Collection,

Object, or Date

T— I I

.equal (collection2 {; ck diacritical}) -> Boolean Boolean
Returns true if the collections are equivalent using a deep comparison.

fill (value {; startFrom {; end}}) -> Mutated Mutated Value
Replaces a range of elements with the passed in value.
The end value can be negative to count backward from the end.

.join (delimiter {; ck ignore null or empty}) -> String String
Creates a string that is the concatenation of all the elements of the collection, separated by the delimiter.
Non-string values are converted to strings. Object are converted to “[object Object]”.

